Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
medRxiv ; 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38585745

RESUMO

Ogden syndrome, also known as NAA10-related neurodevelopmental syndrome, is a rare genetic condition associated with pathogenic variants in the NAA10 N-terminal acetylation family of proteins. The condition was initially described in 2011, and is characterized by a range of neurologic symptoms, including intellectual disability and seizures, as well as developmental delays, psychiatric symptoms, congenital heart abnormalities, hypotonia and others. Previously published articles have described the etiology and phenotype of Ogden syndrome, mostly with retrospective analyses; herein, we report prospective data concerning its progress over time. Additionally, we describe the nature of seizures in this condition in greater detail, as well as investigate how already-available non-pharmaceutical therapies impact individuals with NAA10-related neurodevelopmental syndrome. Using Vineland-3 scores, we show decline in cognitive function over time in individuals with Ogden syndrome. Sub-domain analysis found the decline to be present across all modalities. Additional investigation between seizure and non-seizure groups showed no significant difference in adaptive behavior outcomes. Therapy investigation showed speech therapy to be the most commonly used therapy by individuals with NAA10-related neurodevelopmental syndrome, followed by occupational and physical therapy. with more severely affected individuals receiving more types of therapy than their less-severe counterparts. Early intervention analysis was only significantly effective for speech therapy, with analyses of all other therapies being non-significant. Our study portrays the decline in cognitive function over time of individuals within our cohort, independent of seizure status and therapies being received, and highlights the urgent need for the development of effective treatments for Ogden syndrome.

2.
medRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352572

RESUMO

NAA10-related and NAA15-related neurodevelopmental syndrome, otherwise known as Ogden Syndrome, is known to present with varying degrees of intellectual disability, hypotonia, congenital cardiac abnormalities, seizures, and delayed speech and motor development. However, the ophthalmic manifestations of NAA10 and NAA15 mutations are not yet fully characterized or understood. This study analyzed the prevalence of six ophthalmic conditions (cortical visual impairment, myopia, hyperopia, strabismus, nystagmus, and astigmatism) in 67 patients with pathogenic mutations in the NAA10 cohort (54 inherited, 10 de novo; 65 missense, 2 frameshift) and 19 patients with pathogenic mutations in the NAA15 cohort (18 de novo; 8 frameshift, 4 missense, 4 nonsense, and 1 splice site). Patients were interviewed virtually or in-person to collect a comprehensive medical history verified by medical records. These records were then analyzed to calculate the prevalence of these ophthalmic manifestations in each cohort. Analysis revealed a higher prevalence of ophthalmic conditions in our NAA10 cohort compared to existing literature (myopia 25.4% vs. 4.7%; astigmatism 37.3% vs. 13.2%; strabismus 28.4% vs. 3.8%; CVI 22.4% vs. 8.5%, respectively). No statistically significant differences were identified between the NAA10 and NAA15 mutations. Our study includes novel neuroimaging of 13 NAA10 and 5 NAA15 probands, which provides no clear correlation between globe size and severity of comorbid ophthalmic disease. Finally, anecdotal evidence was compiled to underscore the importance of early ophthalmologic evaluations and therapeutic interventions.

3.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-37163119

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/Y male mice on the inbred genetic background in this different animal facility.

4.
Am J Med Genet A ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964495

RESUMO

Ophthalmological conditions are underreported in patients with KBG syndrome, which is classically described as presenting with dental, developmental, intellectual, skeletal, and craniofacial abnormalities. This study analyzed the prevalence of four ophthalmological conditions (strabismus, astigmatism, myopia, hyperopia) in 43 patients with KBG syndrome carrying variants in ANKRD11 or deletions in 16q24.3 and compared it to the literature. Forty-three patients were recruited via self-referral or a private Facebook group hosted by the KBG Foundation, with 40 of them having pathogenic or likely pathogenic variants. Virtual interviews were conducted to collect a comprehensive medical history verified by medical records. From these records, data analysis was performed to calculate the prevalence of ophthalmological conditions. Out of the 40 participants with pathogenic or likely pathogenic variants, strabismus was reported in 9 (22.5%) participants, while astigmatism, myopia, and hyperopia were reported in 11 (27.5%), 6 (15.0%), and 8 (20.0%) participants, respectively. Other reported conditions include anisometropia, amblyopia, and nystagmus. When compared to the literature, the prevalence of strabismus and refractive errors is higher than other studies. However, more research is needed to determine if variants in ANKRD11 play a role in abnormal development of the visual system. In patients with established KBG syndrome, screening for misalignment or refractive errors should be done, as interventions in patients with these conditions can improve functioning and quality of life.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37821226

RESUMO

Inositol 1,4,5-triphosphate receptor type 1 (ITPR1) is an endoplasmic reticulum-bound intracellular inositol triphosphate receptor involved in the regulation of intracellular calcium. Pathogenic variants in ITPR1 are associated with spinocerebellar ataxia (SCA) types 15/16 and 29 and have recently been implicated in a facial microsomia syndrome. In this report, we present a family with three affected individuals found to have a heterozygous missense c.800C > T (predicted p.Thr267Met) who present clinically with a SCA29-like syndrome. All three individuals presented with varying degrees of ataxia, developmental delay, and apparent intellectual disability, as well as craniofacial involvement-an uncommon finding in patients with SCA29. The variant was identified using clinical exome sequencing and validated with Sanger sequencing. It is presumed to be inherited via parental germline mosaicism. We present our findings to provide additional evidence for germline mosaic inheritance of SCA29, as well as to expand the clinical phenotype of the syndrome.


Assuntos
Mosaicismo , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Células Germinativas , Receptores de Inositol 1,4,5-Trifosfato/genética
6.
medRxiv ; 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503210

RESUMO

The value of computer-assisted image analysis has been shown in several studies. The performance of tools with artificial intelligence (AI), such as GestaltMatcher, is improved with the size and diversity of the training set, but properly labeled training data is currently the biggest bottleneck in developing next-generation phenotyping (NGP) applications. Therefore, we developed GestaltMatcher Database (GMDB) - a database for machine-readable medical image data that complies with the FAIR principles and improves the openness and accessibility of scientific findings in Medical Genetics. An entry in GMDB consists of a medical image such as a portrait, X-ray, or fundoscopy, and machine-readable meta information such as a clinical feature encoded in HPO terminology or a disease-causing mutation reported in HGVS format. In the beginning, data was mainly collected by curators gathering images from the literature. Currently, clinicians and individuals recruited from patient support groups provide their previously unpublished data. For this patient-centered approach, we developed a digital consent form. GMDB is a modern publication medium for case reports that complements preprints, e.g., on medRxiv. To enable inter-cohort comparisons, we implemented a research feature in GMDB that computes the pairwise syndromic similarity between hand-picked cases. Through a community-driven effort, we compiled an image collection of over 7,533 cases with 792 disorders in GMDB. Most of the data was collected from 2,058 publications. In addition, about 1,018 frontal images of 498 previously unpublished cases were obtained. The web interface enables gene- and phenotype-centered queries or infinite scrolls in the gallery. Digital consent has led to increasing adoption of the approach by patients. The research app within GMDB was used to generate syndromic similarity matrices to characterize two novel phenotypes (CSNK2B, PSMC3). GMDB is the first FAIR database for NGP, where data are findable, accessible, interoperable, and reusable. It is a repository for medical images that cannot be included in medRxiv. That means GMDB connects clinicians with a shared interest in particular phenotypes and improves the performance of AI.

7.
Eur J Hum Genet ; 31(7): 824-833, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130971

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microftalmia , Humanos , Feminino , Síndrome , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Genótipo , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo
8.
Am J Med Genet A ; 191(9): 2364-2375, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37226940

RESUMO

Ankyrin Repeat Domain 11 (ANKRD11) gene mutations are associated with KBG syndrome, a developmental disability that affects multiple organ systems. The function of ANKRD11 in human growth and development is not clear, but gene knockout or mutation are lethal in mice embryos and/or pups. In addition, it plays a vital role in chromatin regulation and transcription. Individuals with KBG syndrome are often misdiagnosed or remain undiagnosed until later in life. This is largely due to KBG syndrome's varying and nonspecific phenotypes as well as a lack of accessible genetic testing and prenatal screening. This study documents perinatal outcomes for individuals with KBG syndrome. We obtained data from 42 individuals through videoconferences, medical records, and emails. 45.2% of our cohort was born by C-section, 33.3% had a congenital heart defect, 23.8% were born prematurely, 23.8% were admitted to the NICU, 14.3% were small for gestational age, and 14.3% of the families had a history of miscarriage. These rates were higher in our cohort compared to the overall population, including non-Hispanic and Hispanic populations. Other reports included feeding difficulties (21.4%), neonatal jaundice (14.3%), decreased fetal movement (7.1%), and pleural effusions in utero (4.7%). Comprehensive perinatal studies about KBG syndrome and updated documentation of its phenotypes are important in ensuring prompt diagnosis and can facilitate correct management.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Animais , Camundongos , Adolescente , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/epidemiologia , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Facies , Prevalência , Deleção Cromossômica , Proteínas Repressoras/genética , Fenótipo , Documentação
9.
Am J Med Genet A ; 191(5): 1293-1300, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810866

RESUMO

Our study of 61 children with NAA10-related neurodevelopmental syndrome, an X-linked disorder due to NAA10 gene variants, demonstrated a high prevalence of growth failure, with weight and height percentiles often in the failure-to-thrive diagnostic range; however, dramatic weight fluctuations and phenotypic variability is evidenced in the growth parameters of this population. Although never previously explored in depth, the gastrointestinal pathology associated with NAA10-related neurodevelopmental syndrome includes feeding difficulties in infancy, dysphagia, GERD/silent reflux, vomiting, constipation, diarrhea, bowel incontinence, and presence of eosinophils on esophageal endoscopy, in order from most to least prevalent. Additionally, the gastrointestinal symptom profile for children with this syndrome has been expanded to include eosinophilic esophagitis, cyclic vomiting syndrome, Mallory Weiss tears, abdominal migraine, esophageal dilation, and subglottic stenosis. Although the exact cause of poor growth in NAA10-related neurodevelopmental syndrome probands is unclear and the degree of contribution to this problem by GI symptomatology remains uncertain, an analysis including nine G-tube or GJ-tube fed probands demonstrates that G/GJ-tubes are overall efficacious with respect to improvements in weight gain and caregiving. The choice to insert a gastrostomy or gastrojejunal tube to aid with weight gain is often a challenging decision to make for parents, who may alternatively choose to rely on oral feeding, caloric supplementation, calorie tracking, and feeding therapy. In this case, if NAA10-related neurodevelopmental syndrome children are not tracking above the failure to thrive (FTT) range past 1 year of age despite such efforts, the treating physicians should be consulted regarding possibly undergoing G-tube placement to avoid prolonged growth failure. If G-tubes are not immediately inducing weight gain after insertion, recommendations could include altering formula, increasing caloric input, or exchanging a G-tube for a GJ-tube by means of a minimally invasive procedure.


Assuntos
Nutrição Enteral , Refluxo Gastroesofágico , Criança , Humanos , Nutrição Enteral/métodos , Gastrostomia/métodos , Refluxo Gastroesofágico/cirurgia , Síndrome , Insuficiência de Crescimento/genética , Aumento de Peso , Variação Biológica da População , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E
10.
Eur J Hum Genet ; 30(11): 1244-1254, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35970914

RESUMO

Genetic variants in Ankyrin Repeat Domain 11 (ANKRD11) and deletions in 16q24.3 are known to cause KBG syndrome, a rare syndrome associated with craniofacial, intellectual, and neurobehavioral anomalies. We report 25 unpublished individuals from 22 families with molecularly confirmed diagnoses. Twelve individuals have de novo variants, three have inherited variants, and one is inherited from a parent with low-level mosaicism. The mode of inheritance was unknown for nine individuals. Twenty are truncating variants, and the remaining five are missense (three of which are found in one family). We present a protocol emphasizing the use of videoconference and artificial intelligence (AI) in collecting and analyzing data for this rare syndrome. A single clinician interviewed 25 individuals throughout eight countries. Participants' medical records were reviewed, and data was uploaded to the Human Disease Gene website using Human Phenotype Ontology (HPO) terms. Photos of the participants were analyzed by the GestaltMatcher and DeepGestalt, Face2Gene platform (FDNA Inc, USA) algorithms. Within our cohort, common traits included short stature, macrodontia, anteverted nares, wide nasal bridge, wide nasal base, thick eyebrows, synophrys and hypertelorism. Behavioral issues and global developmental delays were widely present. Neurologic abnormalities including seizures and/or EEG abnormalities were common (44%), suggesting that early detection and seizure prophylaxis could be an important point of intervention. Almost a quarter (24%) were diagnosed with attention deficit hyperactivity disorder and 28% were diagnosed with autism spectrum disorder. Based on the data, we provide a set of recommendations regarding diagnostic and treatment approaches for KBG syndrome.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Facies , Anormalidades Dentárias/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Transtorno do Espectro Autista/genética , Inteligência Artificial , Deleção Cromossômica , Proteínas Repressoras/genética , Fenótipo , Comunicação por Videoconferência
11.
Artigo em Inglês | MEDLINE | ID: mdl-34716203

RESUMO

An SLC30A9-associated cerebrorenal syndrome was first reported in consanguineous Bedouin kindred by Perez et al. in 2017. Although the function of the gene has not yet been fully elucidated, it may be implicated in Wnt signaling and nuclear regulation, as well as in cell and mitochondrial zinc regulation. In this research report, we present a female proband with two distinct, inherited autosomal recessive loss-of-function SLC30A9 variants from unrelated parents. To our knowledge, this is the first reported case of a possible SLC30A9-associated cerebrorenal syndrome in a nonconsanguineous family. Furthermore, a limited statistical analysis was conducted to identify possible allele frequency differences between populations. Our findings provide further support for an SLC30A9-associated cerebrorenal syndrome and may help clarify the gene's function through its possible disease association.


Assuntos
Proteínas de Transporte de Cátions , Deficiência Intelectual , Proteínas de Transporte de Cátions/genética , Proteínas de Ciclo Celular/genética , Consanguinidade , Família , Feminino , Humanos , Padrões de Herança , Deficiência Intelectual/genética , Pais , Linhagem , Síndrome , Fatores de Transcrição/genética
12.
Elife ; 102021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34355692

RESUMO

Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases (NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase, with 40-50% of all mammalian proteins being potential substrates. However, the overall role of amino-terminal acetylation on a whole-organism level is poorly understood, particularly in mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the currently known machinery involved in amino-terminal acetylation in mice.


Assuntos
Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Acetilação , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Acetiltransferase N-Terminal A/deficiência , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/deficiência , Acetiltransferase N-Terminal E/metabolismo
13.
Clin Chim Acta ; 507: 62-68, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32298681

RESUMO

BACKGROUND: The neuronal ceroid lipofuscinosis 2 (NCL2) or classic late-infantile neuronal ceroid lipofuscinosis (LINCL) is a neurogenetic disorder caused by mutations in the TPPI gene, which codes for the lysosomal tripeptidyl peptidase 1 (TPPI) EC 3.4.14.9. Loss of functional TPPI activity results in progressive visual and neurological symptoms starting at around 1-2 years of age causing early death. METHODS: We report a DBS-based TPPI assay that cleaves a synthetic tetrapeptide substrate generating a product that is detected by HPLC. Probands and carriers were identified with 100% accuracy (7 probands, 30 carriers, 13 controls). RESULTS: The assay detected a single TPPI activity at a lower pH towards the substrate tested. TPPI activity measurable when extracted at lower pH while inactive at neutral pH showed steady increase for at least 8 h incubation. No loss in TPPI activity was observed when DBS were stored for at least 2 weeks either in freezer, refrigerator, room temperature or 42 °C. CONCLUSION: A sequence variant causing Arg339Gln substitution in a proband had 12% TPPI. TPPI activity can be reliably measured in DBS, giving an opportunity to diagnose NCL2 at birth and refer patients for enzyme replacement or other therapies for earliest intervention, or alternatively offers a second-tier confirmatory test.


Assuntos
Aminopeptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Teste em Amostras de Sangue Seco , Lipofuscinoses Ceroides Neuronais/sangue , Lipofuscinoses Ceroides Neuronais/diagnóstico , Serina Proteases/metabolismo , Aminopeptidases/sangue , Dipeptidil Peptidases e Tripeptidil Peptidases/sangue , Humanos , Lipofuscinoses Ceroides Neuronais/enzimologia , Serina Proteases/sangue , Tripeptidil-Peptidase 1
15.
Hum Mutat ; 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31646703

RESUMO

We recently described a new neurodevelopmental syndrome (TAF1/MRXS33 intellectual disability syndrome) (MIM# 300966) caused by pathogenic variants involving the X-linked gene TAF1, which participates in RNA polymerase II transcription. The initial study reported eleven families, and the syndrome was defined as presenting early in life with hypotonia, facial dysmorphia, and developmental delay that evolved into intellectual disability (ID) and/or autism spectrum disorder (ASD). We have now identified an additional 27 families through a genotype-first approach. Familial segregation analysis, clinical phenotyping, and bioinformatics were capitalized on to assess potential variant pathogenicity, and molecular modelling was performed for those variants falling within structurally characterized domains of TAF1. A novel phenotypic clustering approach was also applied, in which the phenotypes of affected individuals were classified using 51 standardized Human Phenotype Ontology (HPO) terms. Phenotypes associated with TAF1 variants show considerable pleiotropy and clinical variability, but prominent among previously unreported effects were brain morphological abnormalities, seizures, hearing loss, and heart malformations. Our allelic series broadens the phenotypic spectrum of TAF1/MRXS33 intellectual disability syndrome and the range of TAF1 molecular defects in humans. It also illustrates the challenges for determining the pathogenicity of inherited missense variants, particularly for genes mapping to chromosome X. This article is protected by copyright. All rights reserved.

16.
Artigo em Inglês | MEDLINE | ID: mdl-31387860

RESUMO

Whole-exome sequencing was used to identify the genetic etiology of a rapidly progressing neurological disease present in two of six siblings with early childhood onset of severe progressive spastic paraparesis and learning disabilities. A homozygous mutation (c.2005G>T, p, V669L) was found in VAC14, and the clinical phenotype is consistent with the recently described VAC14-related striatonigral degeneration, childhood-onset syndrome (SNDC) (MIM#617054). However, the phenotype includes a distinct clinical presentation of retinitis pigmentosa (RP), which has not previously been reported in association with VAC14 mutations. Brain magnetic resonance imaging (MRI) revealed abnormal magnetic susceptibility in the globus pallidus, which can be seen in neurodegeneration with brain iron accumulation (NBIA). RP is a group of inherited retinal diseases with phenotypic/genetic heterogeneity, and the pathophysiologic basis of RP is not completely understood but is thought to be due to a primary retinal photoreceptor cell degenerative process. Most cases of RP are seen in isolation (nonsyndromic); this is a report of RP in two siblings with VAC14-associated syndrome, and it is suggested that a connection between RP and VAC14-associated syndrome should be explored in future studies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Retinite Pigmentosa/genética , Adolescente , Encéfalo/patologia , Exoma/genética , Família , Feminino , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Mutação/genética , Paraparesia Espástica/genética , Linhagem , Fenótipo , Retina/patologia , Retinite Pigmentosa/metabolismo , Irmãos , Síndrome , Sequenciamento do Exoma/métodos , Adulto Jovem
17.
Hum Mol Genet ; 28(17): 2900-2919, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31127942

RESUMO

N-alpha-acetylation is one of the most common co-translational protein modifications in humans and is essential for normal cell function. NAA10 encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. The auxiliary and regulatory subunits of the NatA complex are NAA15 and Huntington-interacting protein (HYPK), respectively. Through a genotype-first approach with exome sequencing, we identified and phenotypically characterized 30 individuals from 30 unrelated families with 17 different de novo or inherited, dominantly acting missense variants in NAA10 or NAA15. Clinical features of affected individuals include variable levels of intellectual disability, delayed speech and motor milestones and autism spectrum disorder. Additionally, some subjects present with mild craniofacial dysmorphology, congenital cardiac anomalies and seizures. One of the individuals is an 11-year-old boy with a frameshift variant in exon 7 of NAA10, who presents most notably with microphthalmia, which confirms a prior finding with a single family with Lenz microphthalmia syndrome. Biochemical analyses of variants as part of the human NatA complex, as well as enzymatic analyses with and without the HYPK regulatory subunit, help to explain some of the phenotypic differences seen among the different variants.


Assuntos
Biomarcadores , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética , Fenótipo , Adolescente , Adulto , Alelos , Criança , Pré-Escolar , Biologia Computacional/métodos , Ativação Enzimática , Estabilidade Enzimática , Facies , Feminino , Loci Gênicos , Testes Genéticos , Genótipo , Humanos , Lactente , Masculino , Modelos Moleculares , Mutação , Acetiltransferase N-Terminal A/química , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/química , Acetiltransferase N-Terminal E/metabolismo , Conformação Proteica , Proteínas Recombinantes , Relação Estrutura-Atividade , Adulto Jovem
18.
Autism Res ; 11(5): 707-712, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29394471

RESUMO

Folate deficiency can affect fetal and neonatal brain development Considering the reported association of Folate receptor alpha (FRα) autoantibodies (Abs) with autism and developmental disorders, we sought to confirm this in families of 82 children with ASD, 53 unaffected siblings, 65 fathers, and 70 mothers, along with 52 unrelated normal controls. Overall, 76% of the affected children, 75% of the unaffected siblings, 69% of fathers and 59% of mothers were positive for either blocking or binding Ab, whereas the prevalence of this Ab in the normal controls was 29%. The Ab was highly prevalent in affected families including unaffected siblings. The appearance of these antibodies may have a familial origin but the risk of developing ASD is likely influenced by other mitigating factors since some siblings who had the antibodies were not affected. The antibody response appears heritable with the blocking autoantibody in the parents and affected child increasing the risk of ASD. Autism Res 2018, 11: 707-712. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Folate is an essential nutrient during fetal and infant development. Autoantibodies against the folate receptor alpha can block folate transport from the mother to the fetus and to the brain in infants. Children diagnosed with autism and their immediate family members were evaluated for the prevalence of folate receptor autoantibodies. The autoantibody was highly prevalent in affected families with similar distribution in parents, normal siblings and affected children. The presence of these antibodies appears to have a familial origin and may contribute to developmental deficits when combined with other factors.


Assuntos
Transtorno do Espectro Autista/imunologia , Autoanticorpos/imunologia , Receptor 1 de Folato/imunologia , Pais , Irmãos , Adulto , Transtorno do Espectro Autista/diagnóstico , Criança , Pré-Escolar , Feminino , Humanos , Masculino
19.
Am J Med Genet B Neuropsychiatr Genet ; 174(8): 772-778, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28856789

RESUMO

Telomere shortening was shown to parallel Alzheimer's disease (AD) associated dementia. By using a dual PNA Probe system we have developed a practical method for comparing telomere length in T-lymphocyte interphases from individuals with Down syndrome (DS) with and without "mild cognitive impairment" (MCI-DS) and demonstrated that telomere length can serve as a valid biomarker for the onset of MCI-DS in this high-risk population. To verify progressive cognitive decline we have now examined sequential changes in telomere length in 10 adults with DS (N = 4 Female, N = 6 Male) developing MCI-DS. Cases were selected blind to telomere length from a sample of adults with DS previously enrolled in a prospective longitudinal study at 18-month intervals with clinical and telomere assessments: (1) MCI-DS group data were collected approximately three years prior to development of MCI-DS; (2) 18 months later; (3) when MCI-DS was first observed. These telomere measures were compared to those from another 10 adults with DS matched by sex and approximate age but without indications of MCI-DS (Controls). PNA (peptide nucleic acid) probes for telomeres together with a chromosome two centromere probe were used. Findings indicated telomere shortening over time for both Cases and Controls. Group differences emerged by 18-months prior to recognition of MCI-DS onset and completely non-overlapping distributions of telomere measures were observed by the time of MCI-DS onset. This study adds to accumulating evidence of the value of telomere length, as an early biomarker of AD progression in adults with Down syndrome.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/análise , Disfunção Cognitiva/patologia , Síndrome de Down/patologia , Encurtamento do Telômero , Adulto , Idoso , Doença de Alzheimer/complicações , Doença de Alzheimer/genética , Disfunção Cognitiva/complicações , Disfunção Cognitiva/genética , Progressão da Doença , Síndrome de Down/complicações , Síndrome de Down/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
20.
J Neuropathol Exp Neurol ; 71(5): 382-97, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22487857

RESUMO

The purposes of this study were to identify differences in patterns of developmental abnormalities between the brains of individuals with autism of unknown etiology and those of individuals with duplications of chromosome 15q11.2-q13 (dup[15]) and autism and to identify alterations that may contribute to seizures and sudden death in the latter. Brains of 9 subjects with dup(15), 10 with idiopathic autism, and 7 controls were examined. In the dup(15) cohort, 7 subjects (78%) had autism, 7 (78%) had seizures, and 6 (67%) had experienced sudden unexplained death. Subjects with dup(15) autism were microcephalic, with mean brain weights 300 g less (1,177 g) than those of subjects with idiopathic autism (1,477 g; p<0.001). Heterotopias in the alveus, CA4, and dentate gyrus and dysplasia in the dentate gyrus were detected in 89% of dup(15) autism cases but in only 10% of idiopathic autism cases (p < 0.001). By contrast, cerebral cortex dysplasia was detected in 50% of subjects with idiopathic autism and in no dup(15) autism cases (p<0.04). The different spectrum and higher prevalence of developmental neuropathologic findings in the dup(15) cohort than in cases with idiopathic autism may contribute to the high risk of early onset of seizures and sudden death.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15 , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/patologia , Criança , Pré-Escolar , Coristoma/patologia , Mapeamento Cromossômico , Estudos de Coortes , Feminino , Humanos , Cariotipagem , Masculino , Tamanho do Órgão/genética , Estatísticas não Paramétricas , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...